论文标题

具有指数或亚指数总和的矢量场的经典流量

Classical flows of vector fields with exponential or sub-exponential summability

论文作者

Ambrosio, Luigi, Golo, Sebastiano Nicolussi, Cassano, Francesco Serra

论文摘要

我们表明,矢量字段$ b $的空间衍生物$ d_xb $满足Orlicz的总结条件具有空间连续的代表,并且已妥善。对于亚指数总结性的情况,它们的流量也以定量形式满足了lusin(n)条件。此外,我们证明,如果$ d_xb $满足合适的指数总和条件,那么与$ b $相关的流量具有SOBOLEV的规律性,而无需假设$ {\ rm div} _xb $的有限性。然后,我们将这些结果应用于Cauchy问题的弱解决方案的表示和连续性方程的弱解决方案。

We show that vector fields $b$ whose spatial derivative $D_xb$ satisfies a Orlicz summability condition have a spatially continuous representative and are well-posed. For the case of sub-exponential summability, their flows satisfy a Lusin (N) condition in a quantitative form, too. Furthermore, we prove that if $D_xb$ satisfies a suitable exponential summability condition then the flow associated to $b$ has Sobolev regularity, without assuming boundedness of ${\rm div}_xb$. We then apply these results to the representation and Sobolev regularity of weak solutions of the Cauchy problem for the transport and continuity equations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源