论文标题
在热力学平衡中振动强耦合下真实极化系统的精确解决方案:没有零温度和轻度纠缠的损失
Exact Solution for A Real Polaritonic System Under Vibrational Strong Coupling in Thermodynamic Equilibrium: Absence of Zero Temperature and Loss of Light-Matter Entanglement
论文作者
论文摘要
在强烈的RO振动耦合到热平衡中的量化光腔模式下,真实分子系统(HD $^+$)的第一个精确量子模拟。在描述混合量子统计(玻色子和费米子)的强耦合系统时,通过我们的分子系统的特定选择来讨论和规避。我们的精确模拟揭示了由于空腔诱导的非平衡条件而导致的强耦合物质和光子系统缺乏零温度。此外,我们探索了光剂量纠缠的温度依赖性,该量子纠缠出现,这是地面构造的,但很快已经在深度低温状态下丢失了,这反对了现象学模型(Jaynes-Cummings)的预测。 RO振动状态的可蒸馏的分子光 - 纠缠可能为量子技术应用打开有趣的观点。此外,我们发现物质的动力学(波动)仍然因热温度的热和真空场波动的量子性质而改变,例如在环境条件下。这些观察结果(纠缠和耦合与量子波动的丧失)对对极化化学和材料科学的理解和控制产生了很大的影响,因为对光 - 物质相互作用的半古典理论描述是可行的,但是典型的规范平衡假设对于核动力学仍然破裂。这为量子波动引起振动强耦合引起随机共振现象打开了大门。在没有周期性驾驶的情况下,可以解释实验观察到的共振现象的合理理论机制,但尚未理解。
The first exact quantum simulation of a real molecular system (HD$^+$) under strong ro-vibrational coupling to a quantized optical cavity mode in thermal equilibrium is presented. Theoretical challenges in describing strongly coupled systems of mixed quantum statistics (Bosons and Fermions) are discussed and circumvented by the specific choice of our molecular system. Our exact simulations reveal the absence of a zero temperature for the strongly coupled matter and light subsystems, due to cavity induced non-equilibrium conditions. Furthermore, we explore the temperature dependency of light-matter quantum entanglement, which emerges for the groundstate, but is quickly lost already in the deep cryogenic regime, opposing predictions from phenomenological models (Jaynes-Cummings). Distillable molecular light-matter entanglement of ro-vibrational states may open interesting perspectives for quantum technological applications. Moreover, we find that the dynamics (fluctuations) of matter remains modified by the quantum nature of the thermal and vacuum field fluctuations for significant temperatures, e.g. at ambient conditions. These observations (loss of entanglement and coupling to quantum fluctuations) has far reaching consequences for the understanding and control of polaritonic chemistry and materials science, since a semi-classical theoretical description of light-matter interaction becomes feasible, but the typical canonical equilibrium assumption for the nuclear dynamics remains broken. This opens the door for quantum fluctuations induced stochastic resonance phenomena under vibrational strong coupling. A plausible theoretical mechanism to explain the experimentally observed resonance phenomena in absence of periodic driving, which have not yet been understood.