论文标题

基于多个文本信息和报告的意图自动对错误报告的自动分类

Automatic Classification of Bug Reports Based on Multiple Text Information and Reports' Intention

论文作者

Meng, Fanqi, Wang, Xuesong, Wang, Jingdong, Wang, Peifang

论文摘要

随着软件量表和复杂性的快速增长,将大量错误报告提交到错误跟踪系统中。为了加快缺陷维修的速度,需要对这些报告进行准确的分类,以便可以将其发送给适当的开发人员。但是,现有的分类方法仅使用错误报告的文本信息,这导致其性能较低。为了解决上述问题,本文提出了一种用于错误报告的新自动分类方法。创新是,当对错误报告进行分类时,除了使用报告的文本信息外,还考虑了报告的意图(即建议或说明),从而提高了分类的性能。首先,我们从四个生态系统(Apache,Eclipse,Gentoo,Mozilla)收集错误报告,并手动注释它们以构建实验数据集。然后,我们使用自然语言处理技术来预处理数据。在此基础上,BERT和TF-IDF用于提取意图的特征和多个文本信息。最后,这些功能用于训练分类器。对五个分类器(包括K-Nearest邻居,天真贝叶斯,逻辑回归,支持向量机和随机森林)的实验结果表明,我们提出的方法可实现更好的性能,其F量度从87.3%达到95.5%。

With the rapid growth of software scale and complexity, a large number of bug reports are submitted to the bug tracking system. In order to speed up defect repair, these reports need to be accurately classified so that they can be sent to the appropriate developers. However, the existing classification methods only use the text information of the bug report, which leads to their low performance. To solve the above problems, this paper proposes a new automatic classification method for bug reports. The innovation is that when categorizing bug reports, in addition to using the text information of the report, the intention of the report (i.e. suggestion or explanation) is also considered, thereby improving the performance of the classification. First, we collect bug reports from four ecosystems (Apache, Eclipse, Gentoo, Mozilla) and manually annotate them to construct an experimental data set. Then, we use Natural Language Processing technology to preprocess the data. On this basis, BERT and TF-IDF are used to extract the features of the intention and the multiple text information. Finally, the features are used to train the classifiers. The experimental result on five classifiers (including K-Nearest Neighbor, Naive Bayes, Logistic Regression, Support Vector Machine, and Random Forest) show that our proposed method achieves better performance and its F-Measure achieves from 87.3% to 95.5%.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源