论文标题
在生成对抗网络中明确使用傅里叶光谱
Explicit Use of Fourier Spectrum in Generative Adversarial Networks
论文作者
论文摘要
生成的对手网络由于研究人员的最新性能而引起了研究人员的关注,这仅在目标分布的数据集中生成新图像。已经表明,真实图像的范围和假图像之间存在差异。由于傅立叶变换是一种徒图映射,因此说该模型在学习原始分布方面有一个重大问题是一个公平的结论。在这项工作中,我们研究了当前gan的架构和数学理论中提到的缺点的可能原因。然后,我们提出了一个新模型,以减少实际图像和伪造图像之间的差异。为此,我们使用几何深度学习的蓝图为频域设计了一个全新的架构。然后,我们通过将原始数据的傅立叶域表示作为训练过程中的主要特征来表明生成图像的质量有希望的改善。
Generative Adversarial Networks have got the researchers' attention due to their state-of-the-art performance in generating new images with only a dataset of the target distribution. It has been shown that there is a dissimilarity between the spectrum of authentic images and fake ones. Since the Fourier transform is a bijective mapping, saying that the model has a significant problem in learning the original distribution is a fair conclusion. In this work, we investigate the possible reasons for the mentioned drawback in the architecture and mathematical theory of the current GANs. Then we propose a new model to reduce the discrepancies between the spectrum of the actual and fake images. To that end, we design a brand new architecture for the frequency domain using the blueprint of geometric deep learning. Then, we experimentally show promising improvements in the quality of the generated images by considering the Fourier domain representation of the original data as a principal feature in the training process.