论文标题
群集有效性度量是否有效?
Are Cluster Validity Measures (In)valid?
论文作者
论文摘要
内部群集有效性度量(例如Calinski-Harabasz,Dunn或Davies-Bouldin指数)经常用于选择适当数量的分区数量,应将数据集分为在本文中,我们考虑如果将这些指数视为无监督学习活动中的客观功能会发生什么。关于轮廓指数的最佳分组是否真的有意义?事实证明,许多群集(IN)有效性指数促进了聚类,这些聚类与专家知识的相匹配非常差。我们还引入了邓恩指数的一个新的,表现出色的变体,该变体是建立在OWA操作员和接近邻居图的基础上的,因此无论其形状如何,都可以更好地相互分离。
Internal cluster validity measures (such as the Calinski-Harabasz, Dunn, or Davies-Bouldin indices) are frequently used for selecting the appropriate number of partitions a dataset should be split into. In this paper we consider what happens if we treat such indices as objective functions in unsupervised learning activities. Is the optimal grouping with regards to, say, the Silhouette index really meaningful? It turns out that many cluster (in)validity indices promote clusterings that match expert knowledge quite poorly. We also introduce a new, well-performing variant of the Dunn index that is built upon OWA operators and the near-neighbour graph so that subspaces of higher density, regardless of their shapes, can be separated from each other better.