论文标题

了解粗粒模型中的动力学:ii。用硬球理论建模的粗粒扩散

Understanding Dynamics in Coarse-Grained Models: II. Coarse-Grained Diffusion Modeled Using Hard Sphere Theory

论文作者

Jin, Jaehyeok, Schweizer, Kenneth S., Voth, Gregory A.

论文摘要

该系列的第一篇论文[J。化学物理。 158,034103(2023)]证明,对于细粒度和相应的粗粒(CG)系统,过量的熵缩放率都可保持。尽管具有普遍性,但由于半经验的性质,无法对缩放关系进行更精确的确定。在第二篇论文中,为自下而上的CG系统得出了分析过多的熵缩放关系。在单位CG分辨率下,构建了有效的硬球系统,通过利用如何以液体堆积分数来分析表达硬球动力学和过量熵,从而将几乎相同的动力学特性作为目标CG系统产生。受经典平衡扰动理论的启发以及在构建硬球模型以预测超冷液体激活动力学方面的最新进展,我们提出了一种新的方法,用于了解使用硬球体参考流体在正常状态下分子液体在正常状态中扩散的方法。提出的“波动匹配”旨在具有与CG系统相同的长波长密度波动(无量纲可压缩性)相同的振幅。然后,利用恩斯科理论得出硬球扩散系数的表达,然后建立了CG动力学和过量熵之间的桥梁。 CG扩散系数可以使用状态的各个方程进行大致估算,并且在运行任何CG模拟之前,在不同温度下的加速CG动力学也可以准确预测。通过引入另一层变致,这些发现提供了一种更严格的方法来评估过度的熵缩放并了解分子液的加速CG动力学。

The first paper of this series [J. Chem. Phys. 158, 034103 (2023)] demonstrated that excess entropy scaling holds for both fine-grained and corresponding coarse-grained (CG) systems. Despite its universality, a more exact determination of the scaling relationship was not possible due to the semi-empirical nature. In this second paper, an analytical excess entropy scaling relation is derived for bottom-up CG systems. At the single-site CG resolution, effective hard sphere systems are constructed that yield near-identical dynamical properties as the target CG systems by taking advantage of how hard sphere dynamics and excess entropy can be analytically expressed in terms of the liquid packing fraction. Inspired by classical equilibrium perturbation theories and recent advances in constructing hard sphere models for predicting activated dynamics of supercooled liquids, we propose a new approach for understanding the diffusion of molecular liquids in the normal regime using hard sphere reference fluids. The proposed "fluctuation matching" is designed to have the same amplitude of long wavelength density fluctuations (dimensionless compressibility) as the CG system. Utilizing the Enskog theory to derive an expression for hard sphere diffusion coefficients, a bridge between the CG dynamics and excess entropy is then established. The CG diffusion coefficient can be roughly estimated using various equations of the state, and an accurate prediction of accelerated CG dynamics at different temperatures is also possible in advance of running any CG simulation. By introducing another layer of coarsening, these findings provide a more rigorous method to assess excess entropy scaling and understand the accelerated CG dynamics of molecular fluids.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源