论文标题
在一系列某些非单数函数上
On a Class of certain Non-Univalent Functions
论文作者
论文摘要
在本文中,我们介绍了一个由$$ψ_{a,b}(z)给出的一系列分析功能:= \ dfrac {1} {1} {a-b} \ log {\ dfrac {\ dfrac {1+az} {1+az} {1+bz}}}}}美元 \ begin {equation*} \ Mathcal {f} [a,b]:= \ left \ {f \ in \ mathcal {a}:\ left(\ dfrac {Zf'(z)} {f(z)} {f(z)} - 1 \ right)此外,我们研究了$ψ_{a,b}(z)$的各种特征属性,以及在类$ \ Mathcal {f} [a,b] $中的功能,并获得了$δ$的Starlikesiles of Coldcal $Δ$的敏锐度,并且在$ \ nathcal calcal {f} $ the $ \ nathcal {a n a n a n a n a $ the $ \ nathcal {另外,我们在$ \ Mathcal {bs}(α)中找到了功能的尖锐半径:= \ {f \ in \ Mathcal {a}:zf'(z)/f(z)/f(z)-1 \ prec z/(1-αz^2),\;α\;α\ in(0,1)\ in(0,1) $ \ MATHCAL {s} _ {cs}(α):= \ {f \ in \ Mathcal {a}:zf'(z)/f(z)/f(z)-1 \ prec z/((1-z)(1+αz)(1+αz)),\;α\ in(0,1)\ in(0,1) $ \ Mathcal {f} [a,b]。$
In this paper, we introduce a family of analytic functions given by $$ψ_{A,B}(z):= \dfrac{1}{A-B}\log{\dfrac{1+Az}{1+Bz}},$$ which maps univalently the unit disk onto either elliptical or strip domains, where either $A=-B=α$ or $A=αe^{iγ}$ and $B=αe^{-iγ}$ ($α\in(0,1]$ and $γ\in(0,π/2]$). We study a class of non-univalent analytic functions defined by \begin{equation*} \mathcal{F}[A,B]:=\left\{f\in\mathcal{A}:\left( \dfrac{zf'(z)}{f(z)}-1\right)\precψ_{A,B}(z)\right \}. \end{equation*} Further, we investigate various characteristic properties of $ψ_{A,B}(z)$ as well as functions in the class $\mathcal{F}[A,B]$ and obtain the sharp radius of starlikeness of order $δ$ and univalence for the functions in $\mathcal{F}[A,B]$. Also, we find the sharp radii for functions in $\mathcal{BS}(α):=\{f\in\mathcal{A}:zf'(z)/f(z)-1\prec z/(1-αz^2),\;α\in(0,1)\}$, $\mathcal{S}_{cs}(α):=\{f\in\mathcal{A}:zf'(z)/f(z)-1\prec z/((1-z)(1+αz)),\;α\in(0,1)\}$ and others to be in the class $\mathcal{F}[A,B].$