论文标题

视觉异常识别的弯曲几何网络

Curved Geometric Networks for Visual Anomaly Recognition

论文作者

Hong, Jie, Fang, Pengfei, Li, Weihao, Han, Junlin, Petersson, Lars, Harandi, Mehrtash

论文摘要

学习一种潜在的嵌入以了解数据分布的基本性质,通常在曲率为零的欧几里得空间中提出。但是,在嵌入空间中构成的几何约束的成功表明,弯曲的空间可能会编码更多的结构信息,从而导致更好的判别能力,从而获得更丰富的表示。在这项工作中,我们研究了弯曲空间的好处,用于分析数据中的异常或分布对象。这是通过通过三个几何约束来考虑嵌入的,即球形几何(具有正曲率),双曲几何形状(具有负曲率)或混合几何形状(具有正曲率和负曲率)。鉴于手头的任务,可以在统一的设计中互换选择三个几何约束。为弯曲空间中的嵌入量身定制,我们还制定功能以计算异常得分。提出了两种类型的几何模块(即,几何模块和两个几何模型)提议插入原始的欧几里得分类器,并根据曲面嵌入式计算异常分数。我们在各种视觉识别场景中评估所得设计,包括图像检测(多类OOD检测和一级异常检测)和分段(多类异常分段和一级异常分段)。经验结果表明,通过对各种情况的一致改进,我们的提案的有效性。

Learning a latent embedding to understand the underlying nature of data distribution is often formulated in Euclidean spaces with zero curvature. However, the success of the geometry constraints, posed in the embedding space, indicates that curved spaces might encode more structural information, leading to better discriminative power and hence richer representations. In this work, we investigate benefits of the curved space for analyzing anomalies or out-of-distribution objects in data. This is achieved by considering embeddings via three geometry constraints, namely, spherical geometry (with positive curvature), hyperbolic geometry (with negative curvature) or mixed geometry (with both positive and negative curvatures). Three geometric constraints can be chosen interchangeably in a unified design given the task at hand. Tailored for the embeddings in the curved space, we also formulate functions to compute the anomaly score. Two types of geometric modules (i.e., Geometric-in-One and Geometric-in-Two models) are proposed to plug in the original Euclidean classifier, and anomaly scores are computed from the curved embeddings. We evaluate the resulting designs under a diverse set of visual recognition scenarios, including image detection (multi-class OOD detection and one-class anomaly detection) and segmentation (multi-class anomaly segmentation and one-class anomaly segmentation). The empirical results show the effectiveness of our proposal through the consistent improvement over various scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源