论文标题

通勤操作员框架中的量子传送

Quantum teleportation in the commuting operator framework

论文作者

Conlon, Alexandre, Crann, Jason, Kribs, David W., Levene, Rupert H.

论文摘要

我们介绍了在通勤运算符位置模型中,在半限制von Neumann代数的子代数之间引入了传送方案的概念。 Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants $N'\cap M$ of a large class of finite-index inclusions $N\subseteq M$ of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables are contained in the classical communication sent between the parties.对于一大批矩阵代数$ n $ $ n $,包括与混合经典/量子代码相关的矩阵$ m_n(\ mathbb {c})$,我们表明,$ n $的任何紧密传送方案都必须来自$ M_n的正常单位$ m_n($ m math)$ n $'(c)沃纳。将我们的技术与Brannan-Ganesan-Harris的技术相结合,我们计算由有限维夹杂物$ n \ subseteq m $引起的各种量子图的量子色数。

We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants $N'\cap M$ of a large class of finite-index inclusions $N\subseteq M$ of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables are contained in the classical communication sent between the parties. For a large class of subalgebras $N$ of matrix algebras $M_n(\mathbb{C})$, including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for $N$ necessarily arises from an orthonormal unitary Pimsner-Popa basis of $M_n(\mathbb{C})$ over $N'$, generalising work of Werner. Combining our techniques with those of Brannan-Ganesan-Harris, we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions $N\subseteq M$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源