论文标题
通勤操作员框架中的量子传送
Quantum teleportation in the commuting operator framework
论文作者
论文摘要
我们介绍了在通勤运算符位置模型中,在半限制von Neumann代数的子代数之间引入了传送方案的概念。 Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants $N'\cap M$ of a large class of finite-index inclusions $N\subseteq M$ of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables are contained in the classical communication sent between the parties.对于一大批矩阵代数$ n $ $ n $,包括与混合经典/量子代码相关的矩阵$ m_n(\ mathbb {c})$,我们表明,$ n $的任何紧密传送方案都必须来自$ M_n的正常单位$ m_n($ m math)$ n $'(c)沃纳。将我们的技术与Brannan-Ganesan-Harris的技术相结合,我们计算由有限维夹杂物$ n \ subseteq m $引起的各种量子图的量子色数。
We introduce a notion of teleportation scheme between subalgebras of semi-finite von Neumann algebras in the commuting operator model of locality. Using techniques from subfactor theory, we present unbiased teleportation schemes for relative commutants $N'\cap M$ of a large class of finite-index inclusions $N\subseteq M$ of tracial von Neumann algebras, where the unbiased condition means that no information about the teleported observables are contained in the classical communication sent between the parties. For a large class of subalgebras $N$ of matrix algebras $M_n(\mathbb{C})$, including those relevant to hybrid classical/quantum codes, we show that any tight teleportation scheme for $N$ necessarily arises from an orthonormal unitary Pimsner-Popa basis of $M_n(\mathbb{C})$ over $N'$, generalising work of Werner. Combining our techniques with those of Brannan-Ganesan-Harris, we compute quantum chromatic numbers for a variety of quantum graphs arising from finite-dimensional inclusions $N\subseteq M$.