论文标题

部分可观测时空混沌系统的无模型预测

Localization in Hochschild homology

论文作者

Pflaum, Markus J.

论文摘要

本地化方法在环状同源理论中无处不在,但详细不同,用于不同的情况。在本文中,我们将详细说明在非交通性几何形状中的定位方法的共同特征,即对所考虑的代数的解剖以及将计算减少到造层的茎上。我们方法的新颖性在于我们使用的方法主要源于真实的代数几何形状。然后,我们将指出该方法如何用于确定更复杂的代数的Hochschild同源性理论。

Localization methods are ubiquitous in cyclic homology theory, but vary in detail and are used in different scenarios. In this paper we will elaborate on a common feature of localization methods in noncommutative geometry, namely sheafification of the algebra under consideration and reduction of the computation to the stalks of the sheaf. The novelty of our approach lies in the methods we use which mainly stem from real instead of complex algebraic geometry. We will then indicate how this method can be used to determine the Hochschild homology theory of more complicated algebras out of simpler ones.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源