论文标题

部分可观测时空混沌系统的无模型预测

Truncated Hermite polynomials

论文作者

Dominici, Diego, Marcellán, Francisco

论文摘要

我们考虑多项式的家族$ p_ {n} \ left(x; z \ right),相对于内部乘积\ [\ left \ langle f,g \ rangle = \ rangle = \ ing = \ int _ { - z}^{z}^{z} f \ weft(x \ weft(x \ weft) \,dx。我们显示了有关系数的三个复发关系中的一些属性零。

We consider the family of polynomials $p_{n}\left( x;z\right) ,$ orthogonal with respect to the inner product \[ \left\langle f,g\right\rangle = \int_{-z}^{z} f\left( x\right) g\left( x\right) e^{-x^{2}} \,dx. \] We show some properties about the coefficients in their 3-term recurrence relation, connections between $p_{n}\left( x;z\right) $ and $p_{n}^{\prime}\left( x;z\right) ,$ a second order differential equation satisfied by $p_{n}\left( x;z\right) ,$ and an electrostatic interpretation of their zeros.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源