论文标题
在动态边界条件下的热方程中初始温度的数值鉴定
Numerical identification of initial temperatures in heat equation with dynamic boundary conditions
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We investigate the inverse problem of numerically identifying unknown initial temperatures in a heat equation with dynamic boundary conditions whenever some overdetermination data is provided after a final time. This is a backward parabolic problem which is severely ill-posed. As a first step, the problem is reformulated as an optimization problem with an associated cost functional. Using the weak solution approach, an explicit formula for the Fréchet gradient of the cost functional is derived from the corresponding sensitivity and adjoint problems. Then the Lipschitz continuity of the gradient is proved. Next, further spectral properties of the input-output operator are established. Finally, the numerical results for noisy measured data are performed using the regularization framework and the conjugate gradient method. We consider both one- and two-dimensional numerical experiments using finite difference discretization to illustrate the efficiency of the designed algorithm. Aside from dealing with a time derivative on the boundary, the presence of a boundary diffusion makes the analysis more complicated. This issue is handled in the 2-D case by considering the polar coordinate system. The presented method implies fast numerical results.