论文标题

部分可观测时空混沌系统的无模型预测

Euler Systems and Selmer Bounds for GU(2,1)

论文作者

Manji, Muhammad

论文摘要

我们研究了与Loeffler-Skinner-Szerbes构建的假想二次场$ e $相对于单一象征组GU(2,1)的某些自动形态表示相关的Euler系统的属性。 By adapting Mazur and Rubin's Euler system machinery we prove one divisibility of the ``rank 1" Iwasawa main conjecture under some mild hypotheses. When $p$ is split in $E$ we also prove a ``rank 0" statement of the main conjecture, bounding a particular Selmer group in terms of a $p$-adic distribution conjecturally interpolating complex $L$-values.然后,我们在整体级别上证明了这些结果的下降版本,我们在某些bloch-kato selmer ofter上绑定了这些结果。我们还将讨论$ p $是惰性的情况,这是正在进行的工作。

We investigate properties of the Euler system associated to certain automorphic representations of the unitary similitude group GU(2,1) with respect to an imaginary quadratic field $E$, constructed by Loeffler-Skinner-Zerbes. By adapting Mazur and Rubin's Euler system machinery we prove one divisibility of the ``rank 1" Iwasawa main conjecture under some mild hypotheses. When $p$ is split in $E$ we also prove a ``rank 0" statement of the main conjecture, bounding a particular Selmer group in terms of a $p$-adic distribution conjecturally interpolating complex $L$-values. We then prove descended versions of these results, at integral level, where we bound certain Bloch--Kato Selmer groups. We will also discuss the case where $p$ is inert, which is a work in progress.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源