论文标题
部分可观测时空混沌系统的无模型预测
Parsimonious Argument Annotations for Hate Speech Counter-narratives
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We present an enrichment of the Hateval corpus of hate speech tweets (Basile et. al 2019) aimed to facilitate automated counter-narrative generation. Comparably to previous work (Chung et. al. 2019), manually written counter-narratives are associated to tweets. However, this information alone seems insufficient to obtain satisfactory language models for counter-narrative generation. That is why we have also annotated tweets with argumentative information based on Wagemanns (2016), that we believe can help in building convincing and effective counter-narratives for hate speech against particular groups. We discuss adequacies and difficulties of this annotation process and present several baselines for automatic detection of the annotated elements. Preliminary results show that automatic annotators perform close to human annotators to detect some aspects of argumentation, while others only reach low or moderate level of inter-annotator agreement.