论文标题

部分可观测时空混沌系统的无模型预测

Efficient Personalized Learning for Wearable Health Applications using HyperDimensional Computing

论文作者

Shahhosseini, Sina, Ni, Yang, Alikhani, Hamidreza, Naeini, Emad Kasaeyan, Imani, Mohsen, Dutt, Nikil, Rahmani, Amir M.

论文摘要

健康监测应用程序越来越依赖机器学习技术来学习日常环境中的最终用户生理和行为模式。考虑到可穿戴设备在监视人体参数中的重要作用,可以利用在设备上学习为行为和生理模式建立个性化模型,并同时为用户提供数据隐私。但是,大多数这些可穿戴设备的资源限制都阻止了对它们进行在线学习的能力。为了解决这个问题,需要从算法的角度重新考虑机器学习模型,以适合在可穿戴设备上运行。高维计算(HDC)为资源受限设备提供了非常适合的设备学习解决方案,并为保护隐私的个性化提供了支持。我们的基于HDC的方法具有灵活性,高效率,弹性和性能,同时可以实现设备个性化和隐私保护。我们使用三个案例研究评估了方法的疗效,并表明我们的系统将培训能源效率提高了高达$ 45.8 \ times $,而最先进的深神经网络(DNN)算法则可以提高培训的能力。

Health monitoring applications increasingly rely on machine learning techniques to learn end-user physiological and behavioral patterns in everyday settings. Considering the significant role of wearable devices in monitoring human body parameters, on-device learning can be utilized to build personalized models for behavioral and physiological patterns, and provide data privacy for users at the same time. However, resource constraints on most of these wearable devices prevent the ability to perform online learning on them. To address this issue, it is required to rethink the machine learning models from the algorithmic perspective to be suitable to run on wearable devices. Hyperdimensional computing (HDC) offers a well-suited on-device learning solution for resource-constrained devices and provides support for privacy-preserving personalization. Our HDC-based method offers flexibility, high efficiency, resilience, and performance while enabling on-device personalization and privacy protection. We evaluate the efficacy of our approach using three case studies and show that our system improves the energy efficiency of training by up to $45.8\times$ compared with the state-of-the-art Deep Neural Network (DNN) algorithms while offering a comparable accuracy.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源