论文标题
美国在县一级在美国的Covid-19疫苗犹豫的分析
An Analysis of COVID-19 Vaccine Hesitancy in the U.S. at the County Level
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Reluctance or refusal to get vaccinated, referred to as vaccine hesitancy (VH), has hindered the efforts of COVID-19 vaccination campaigns. It is important to understand what factors impact VH behavior. This information can help design public health interventions that could potentially increase vaccine uptake. We develop a random forest (RF) classification model that uses a wide variety of data to determine what factors affected VH at the county level during 2021. We consider static factors (such as gender, race, political affiliation, etc.) and dynamic factors (such as Google searches, social media postings, Stringency Index, etc.). Our model found political affiliation and the number of Google searches to be the most relevant factors in determining VH behavior. The RF classification model grouped counties of the U.S. into 5 clusters. VH is lowest in cluster 1 and highest in cluster 5. Most of the people who live in cluster 1 are democrat, are more internet-inquisitive (are more prone to seek information from multiple sources on the internet), have the longest life expectancy, have a college degree, have the highest income per capita, live in metropolitan areas. Most people who live in cluster 5 are republicans, are the least internet-inquisitive, have the shortest life expectancy, do not have a college degree, have the lowest income per capita, and live in non-metropolitan areas. Our model found that counties in cluster 1 were most responsive to vaccination-related policies and COVID-19 restrictions. These strategies did not have an impact on the VH of counties in cluster 5.