论文标题

部分可观测时空混沌系统的无模型预测

Spectrum of quantum KdV hierarchy in the semiclassical limit

论文作者

Dymarsky, Anatoly, Kakkar, Ashish, Pavlenko, Kirill, Sugishita, Sotaro

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We employ semiclassical quantization to calculate spectrum of quantum KdV charges in the limit of large central charge $c$. Classically, KdV charges $Q_{2n-1}$ generate completely integrable dynamics on the co-adjoint orbit of the Virasoro algebra. They can be expressed in terms of action variables $I_k$, e.g.~as a power series expansion. Quantum-mechanically this series becomes the expansion in $1/c$, while action variables become integer-valued quantum numbers $n_i$. Crucially, classical expression, which is homogeneous in $I_k$, acquires quantum corrections that include terms of subleading powers in $n_k$. At first two non-trivial orders in $1/c$ expansion these ``quantum'' terms can be fixed from the analytic form of $Q_{2n-1}$ acting on the primary states. In this way we find explicit expression for the spectrum of $Q_{2n-1}$ up to first three orders in $1/c$ expansion. We apply this result to study thermal expectation values of $Q_{2n-1}$ and free energy of the KdV Generalized Gibbs Ensemble.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源