论文标题
部分可观测时空混沌系统的无模型预测
CircuitNet: An Open-Source Dataset for Machine Learning Applications in Electronic Design Automation (EDA)
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The electronic design automation (EDA) community has been actively exploring machine learning (ML) for very large-scale integrated computer-aided design (VLSI CAD). Many studies explored learning-based techniques for cross-stage prediction tasks in the design flow to achieve faster design convergence. Although building ML models usually requires a large amount of data, most studies can only generate small internal datasets for validation because of the lack of large public datasets. In this essay, we present the first open-source dataset called CircuitNet for ML tasks in VLSI CAD.