论文标题
部分可观测时空混沌系统的无模型预测
A Generalized Scalar Potential Integral Equation Formulation for the DC Analysis of Conductors
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
The electrostatic modeling of conductors is a fundamental challenge in various applications, including the prediction of parasitic effects in electrical interconnects, the design of biasing networks, and the modeling of biological, microelectromechanical, and sensing systems. The boundary element method (BEM) can be an effective simulation tool for these problems because it allows modeling three-dimensional objects with only a surface mesh. However, existing BEM formulations can be restrictive because they make assumptions specific to particular applications. For example, capacitance extraction formulations usually assume a constant electric scalar potential on the surface of each conductor and cannot be used to model a flowing current, nor to extract the resistance. When modeling steady currents, many existing techniques do not address mathematical challenges such as the null space associated with the operators representing the internal region of a conductor. We propose a more general BEM framework based on the electric scalar potential for modeling conductive objects in various scenarios in a unified manner. Restrictive application-specific assumptions are not made, and the aforementioned operator null space is handled in an intuitive and rigorous manner. Numerical examples drawn from diverse applications confirm the accuracy and generality of the proposed method.