论文标题

部分可观测时空混沌系统的无模型预测

Bayesian inference of petrophysical properties with generative spectral induced polarization models

论文作者

Bérubé, Charles L., Baron, Frédérique

论文摘要

机械诱导的极化(IP)模型描述了地貌的内在特性与其频率依赖性复杂电导率光谱之间的关系。但是,与IP数据估算岩石物理特性相关的不确定性仍然鲜为人知。因此,从业者很少使用机械模型来解释实际的IP数据。我们提出了一个框架,以严格评估任何IP模型的灵敏度和参数估计限制。该框架由有条件的变分自动编码器(CVAE)组成,这是一种无监督的贝叶斯神经网络,专门研究数据维度降低和生成建模。我们在充满电解质填充的宿主地材料中金属矿物包含物的合成混合物的IP特征上训练CVAE,并描述数据转化对模型的影响。首先,CVAE的Jacobian揭示了每个岩石物理特性对生成光谱IP数据的相对重要性。最关键的参数是宿主的电导率,包含物的体积含量,夹杂物的特征长度以及宿主的介电常数。夹杂物的扩散系数,介电常数和电导率以及宿主的扩散系数,仅对生成IP模型具有边缘重要性。参数估计实验使用各种模型约束场景得出岩石物理性能的标准化精度,并证实了灵敏度分析结果。最后,我们可视化数据转换和模型约束对岩石物理参数空间的影响。我们得出的结论是,一个共同的对数数据转换会产生最佳参数估计结果,并且限制了地材料的电化学特性改善了其金属夹杂物特征长度的估计,反之亦然。

Mechanistic induced polarization (IP) models describe the relationships between the intrinsic properties of geomaterials and their frequency-dependent complex conductivity spectra. However, the uncertainties associated with estimating petrophysical properties from IP data are still poorly understood. Therefore, practitioners rarely use mechanistic models to interpret actual IP data. We propose a framework for critically assessing any IP model's sensitivity and parameter estimation limitations. The framework consists of a conditional variational autoencoder (CVAE), an unsupervised Bayesian neural network specializing in data dimension reduction and generative modeling. We train the CVAE on the IP signatures of synthetic mixtures of metallic mineral inclusions in electrolyte-filled host geomaterials and describe the effect of data transformations on the model. First, the CVAE's Jacobian reveals the relative importance of each petrophysical property for generating spectral IP data. The most critical parameters are the conductivity of the host, the volumetric content of the inclusions, the characteristic length of the inclusions, and the permittivity of the host. The inclusions' diffusion coefficient, permittivity, and conductivity, as well as the host's diffusion coefficient, only have marginal importance for generative IP modeling. A parameter estimation experiment yields the standardized accuracy of petrophysical properties using various model constraints scenarios and corroborates the sensitivity analysis results. Finally, we visualize the effects of data transformations and model constraints on the petrophysical parameter space. We conclude that a common logarithm data transformation yields optimal parameter estimation results and that constraining the electrochemical properties of the geomaterial improves estimates of the characteristic length of its metallic inclusions and vice versa.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源