论文标题

快速两步的盲目畸变校正

Fast Two-step Blind Optical Aberration Correction

论文作者

Eboli, Thomas, Morel, Jean-Michel, Facciolo, Gabriele

论文摘要

任何相机的光学元件都会降低照片的清晰度,这是一个关键的视觉质量标准。该降解的特征是点传播函数(PSF),该函数取决于光的波长,并且在整个成像场中都是可变的。在本文中,我们提出了一个两步方案,以纠正单个RAW或JPEG图像中的光学畸变,即没有相机或镜头上任何事先信息。首先,我们估算当地的高斯模糊内核,以重叠斑块,并使用非盲脱毛技术锐化。基于数十个镜片的PSF的测量值,这些模糊内核被建模为由七个参数定义的RGB高斯人。其次,我们使用卷积神经网络去除剩余的侧向色差(第一步中未考虑),该网络被训练以最大程度地减少红色/绿色和蓝色/绿色/绿色残留图像。合成图像和真实图像的实验都表明,这两个阶段的组合产生了一种快速的最新盲畸变补偿技术,该技术与商业非盲算法竞争。

The optics of any camera degrades the sharpness of photographs, which is a key visual quality criterion. This degradation is characterized by the point-spread function (PSF), which depends on the wavelengths of light and is variable across the imaging field. In this paper, we propose a two-step scheme to correct optical aberrations in a single raw or JPEG image, i.e., without any prior information on the camera or lens. First, we estimate local Gaussian blur kernels for overlapping patches and sharpen them with a non-blind deblurring technique. Based on the measurements of the PSFs of dozens of lenses, these blur kernels are modeled as RGB Gaussians defined by seven parameters. Second, we remove the remaining lateral chromatic aberrations (not contemplated in the first step) with a convolutional neural network, trained to minimize the red/green and blue/green residual images. Experiments on both synthetic and real images show that the combination of these two stages yields a fast state-of-the-art blind optical aberration compensation technique that competes with commercial non-blind algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源