论文标题

对低功率可穿戴物质系统的实时癫痫发作检测检测的多个知识蒸馏

Many-to-One Knowledge Distillation of Real-Time Epileptic Seizure Detection for Low-Power Wearable Internet of Things Systems

论文作者

Baghersalimi, Saleh, Amirshahi, Alireza, Forooghifar, Farnaz, Teijeiro, Tomas, Aminifar, Amir, Atienza, David

论文摘要

将低功率可穿戴互联网(IoT)系统集成到常规健康监控中是一个持续的挑战。可穿戴设备的计算能力的最新进展使得通过利用多个生物信号并使用高性能算法(例如深神经网络(DNNS))来针对复杂情况。但是,算法的性能与资源有限的物联网平台的低功率要求之间存在权衡。此外,身体上更大和多生物信号的可穿戴设备给患者带来了明显的不适。因此,减少功耗和不适是患者在日常生活中不断使用物联网设备的必要条件。为了克服这些挑战,在癫痫发作检测的背景下,我们提出了针对物联网可穿戴系统中的单生物信号处理的多对一信号知识蒸馏方法。起点是要获得高度精确的多生基信号DNN,然后采用我们的方法来为物联网系统开发单个生育DNN解决方案,以实现与原始的多生基信号DNN相当的精度。为了评估我们对现实生活中情景的方法的实用性,我们对几个最新的边缘计算平台(例如Kendryte K210和Raspberry Pi Zero)进行了全面的仿真实验分析。

Integrating low-power wearable Internet of Things (IoT) systems into routine health monitoring is an ongoing challenge. Recent advances in the computation capabilities of wearables make it possible to target complex scenarios by exploiting multiple biosignals and using high-performance algorithms, such as Deep Neural Networks (DNNs). There is, however, a trade-off between performance of the algorithms and the low-power requirements of IoT platforms with limited resources. Besides, physically larger and multi-biosignal-based wearables bring significant discomfort to the patients. Consequently, reducing power consumption and discomfort is necessary for patients to use IoT devices continuously during everyday life. To overcome these challenges, in the context of epileptic seizure detection, we propose a many-to-one signals knowledge distillation approach targeting single-biosignal processing in IoT wearable systems. The starting point is to get a highly-accurate multi-biosignal DNN, then apply our approach to develop a single-biosignal DNN solution for IoT systems that achieves an accuracy comparable to the original multi-biosignal DNN. To assess the practicality of our approach to real-life scenarios, we perform a comprehensive simulation experiment analysis on several state-of-the-art edge computing platforms, such as Kendryte K210 and Raspberry Pi Zero.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源