论文标题

基于脑电图的情绪识别的自我监督组减数分裂对比度学习

Self-supervised Group Meiosis Contrastive Learning for EEG-Based Emotion Recognition

论文作者

Kan, Haoning, Yu, Jiale, Huang, Jiajin, Liu, Zihe, Zhou, Haiyan

论文摘要

近年来,基于脑电图的情绪识别的进步已受到人机相互作用和认知科学领域的广泛关注。但是,如何使用有限的标签识别情绪已成为一种新的研究和应用瓶颈。为了解决这个问题,本文提出了一个基于人类中刺激一致的EEG信号的自我监督组减数分裂对比学习框架(SGMC)。在SGMC中,开发了一种新型遗传学启发的数据增强方法,称为减数分裂。它利用了组中脑电图样品之间的刺激对齐,以配对,交叉交换和分离来产生增强组。该模型采用组投影仪,从相同的情感视频刺激触发的脑电图样本中提取组级特征表示。然后,使用对比度学习来最大程度地提高具有相同刺激的增强群体的组级表示的相似性。 SGMC在公开可用的DEAP数据集上实现了最新的情感识别结果,其价值为94.72%和95.68%的价值和唤醒维度,并且在公共种子数据集上的竞争性能也达到了94.04%的准确性。值得注意的是,即使使用有限的标签,SGMC也会显示出明显的性能。此外,功能可视化的结果表明,该模型可能已经学习了视频级与情感相关的特征表示,以改善情绪识别。在超级参数分析中进一步评估了组大小的影响。最后,进行了对照实验和消融研究以检查建筑的合理性。该代码公开在线提供。

The progress of EEG-based emotion recognition has received widespread attention from the fields of human-machine interactions and cognitive science in recent years. However, how to recognize emotions with limited labels has become a new research and application bottleneck. To address the issue, this paper proposes a Self-supervised Group Meiosis Contrastive learning framework (SGMC) based on the stimuli consistent EEG signals in human being. In the SGMC, a novel genetics-inspired data augmentation method, named Meiosis, is developed. It takes advantage of the alignment of stimuli among the EEG samples in a group for generating augmented groups by pairing, cross exchanging, and separating. And the model adopts a group projector to extract group-level feature representations from group EEG samples triggered by the same emotion video stimuli. Then contrastive learning is employed to maximize the similarity of group-level representations of augmented groups with the same stimuli. The SGMC achieves the state-of-the-art emotion recognition results on the publicly available DEAP dataset with an accuracy of 94.72% and 95.68% in valence and arousal dimensions, and also reaches competitive performance on the public SEED dataset with an accuracy of 94.04%. It is worthy of noting that the SGMC shows significant performance even when using limited labels. Moreover, the results of feature visualization suggest that the model might have learned video-level emotion-related feature representations to improve emotion recognition. And the effects of group size are further evaluated in the hyper parametric analysis. Finally, a control experiment and ablation study are carried out to examine the rationality of architecture. The code is provided publicly online.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源