论文标题

连续的运动模式识别和步态阶段估计基于带有人工神经网络的柄安装的IMU

Continuous locomotion mode recognition and gait phase estimation based on a shank-mounted IMU with artificial neural networks

论文作者

Weigand, Florian, Höhl, Andreas, Zeiss, Julian, Konigorski, Ulrich, Grimmer, Martin

论文摘要

为了改善对步态辅助的可穿戴机器人技术的控制,我们提出了一种基于包括时间历史信息的人工神经网络的连续运动模式识别以及步态阶段和楼梯坡度估算的方法。输入功能仅由处理的变量组成,这些变量可以通过单个柄安装的惯性测量单元进行测量。我们引入了可穿戴设备,以获取现实世界环境测试数据,以证明该方法的性能和鲁棒性。确定平均绝对误差(步态相,楼梯斜率)和准确性(运动模式),以进行稳定的步行和稳定的楼梯移动。使用来自不同传感器硬件,传感器固定,移动环境和受试者的测试数据评估鲁棒性。步态阶段稳定步态测试数据的平均绝对误差为2.0-3.5%,楼梯坡度估计为3.3-3.8°。在测试数据上使用时间历史记录信息的利用在98.51%和99.67%之间的测试数据上正确的运动模式的准确性。结果表明,在稳定步态期间,不断预测步态阶段,楼梯斜率和运动模式的高性能和鲁棒性。如假设的那样,时间历史信息改善了运动模式识别。然而,尽管步态估计在运动模式之间未经训练的过渡方面表现良好,但我们的定性分析表明,将过渡数据纳入神经网络的训练以改善斜坡和运动模式的预测可能是有益的。我们的结果表明,人工神经网络可用于对可穿戴下肢机器人技术的高水平控制。

To improve the control of wearable robotics for gait assistance, we present an approach for continuous locomotion mode recognition as well as gait phase and stair slope estimation based on artificial neural networks that include time history information. The input features consist exclusively of processed variables that can be measured with a single shank-mounted inertial measurement unit. We introduce a wearable device to acquire real-world environment test data to demonstrate the performance and the robustness of the approach. Mean absolute error (gait phase, stair slope) and accuracy (locomotion mode) were determined for steady level walking and steady stair ambulation. Robustness was assessed using test data from different sensor hardware, sensor fixations, ambulation environments and subjects. The mean absolute error from the steady gait test data for the gait phase was 2.0-3.5 % for gait phase estimation and 3.3-3.8° for stair slope estimation. The accuracy of classifying the correct locomotion mode on the test data with the utilization of time history information was in between 98.51 % and 99.67 %. Results show high performance and robustness for continuously predicting gait phase, stair slope and locomotion mode during steady gait. As hypothesized, time history information improves the locomotion mode recognition. However, while the gait phase estimation performed well for untrained transitions between locomotion modes, our qualitative analysis revealed that it may be beneficial to include transition data into the training of the neural network to improve the prediction of the slope and the locomotion mode. Our results suggest that artificial neural networks could be used for high level control of wearable lower limb robotics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源