论文标题
部分可观测时空混沌系统的无模型预测
Digital Twin Assisted Task Offloading for Aerial Edge Computing and Networks
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Considering the user mobility and unpredictable mobile edge computing (MEC) environments, this paper studies the intelligent task offloading problem in unmanned aerial vehicle (UAV)-enabled MEC with the assistance of digital twin (DT). We aim at minimizing the energy consumption of the entire MEC system by jointly optimizing mobile terminal users (MTUs) association, UAV trajectory, transmission power distribution and computation capacity allocation while respecting the constraints of mission maximum processing delays. Specifically, double deep Q-network (DDQN) algorithm stemming from deep reinforcement learning is first proposed to effectively solve the problem of MTUs association and UAV trajectory. Then, the closed-form expression is employed to handle the problem of transmission power distribution and the computation capacity allocation problem is further addressed via an iterative algorithm. Numerical results show that our proposed scheme is able to converge and significantly reduce the total energy consumption of the MEC system compared to the benchmark schemes.