论文标题

部分可观测时空混沌系统的无模型预测

Generating non-jumps from a known one

论文作者

Hou, Jianfeng, Li, Heng, Yang, Caihong, Zhang, Yixiao

论文摘要

令$ r \ ge 2 $为整数。如果存在常数$ c> 0 $,则实际数字$α\是$ r $的跳跃,使得对于任何$ε> 0 $和任何整数$ m \ geq r $,都存在一个整数$ n_0(ε,m),$ r $ - $ r $ - 均匀的$ n \ ge n \ ge n _ $ n_0(+n_0(+ge n_0)+dis+ε,m),m)包含一个带有$ M $顶点的子图和密度至少$α+c $。 Erdős,Stone和Simonovits的结果表明,[0,1)$中的每个$α\都是$ r = 2 $的跳跃。埃尔德(Erd)问$ r \ ge 3 $是否相同。 FranklandRödl通过表明$ 1- \ frac {1} {l^{r-1}} $给出了负面答案,如果$ r $ \ ge 3 $和$ l> 2r $,则不是$ r $的跳跃。之后,使用Frankl和Rödl方法发现了更多的非跳跃。在本说明中,我们展示了一种构建地图$ f \ colon [0,1] \ to [0,1] $的方法,该方法可以保留非跳跃,如果$α$是FranklandRödl方法给出的$ r $的非跳跃,那么$ f(α)$也是$ r $ $ r $的非jump。我们使用这些地图研究了Turán的高图密度,并回答了Grosu提出的问题。

Let $r\ge 2$ be an integer. The real number $α\in [0,1]$ is a jump for $r$ if there exists a constant $c > 0$ such that for any $ε>0$ and any integer $m \geq r$, there exists an integer $n_0(ε, m)$ satisfying any $r$-uniform graph with $n\ge n_0(ε, m)$ vertices and density at least $α+ε$ contains a subgraph with $m$ vertices and density at least $α+c$. A result of Erdős, Stone and Simonovits implies that every $α\in [0,1)$ is a jump for $r=2$. Erdős asked whether the same is true for $r\ge 3$. Frankl and Rödl gave a negative answer by showing that $1-\frac{1}{l^{r-1}}$ is not a jump for $r$ if $r\ge 3$ and $l>2r$. After that, more non-jumps are found using a method of Frankl and Rödl. In this note, we show a method to construct maps $f \colon [0,1] \to [0,1]$ that preserve non-jumps, if $α$ is a non-jump for $r$ given by the method of Frankl and Rödl, then $f(α)$ is also a non-jump for $r$. We use these maps to study hypergraph Turán densities and answer a question posed by Grosu.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源