论文标题

基于远程虹膜和图形暹罗神经网络的验证系统

Verification system based on long-range iris and Graph Siamese Neural Networks

论文作者

Zola, Francesco, Fernandez-Carrasco, Jose Alvaro, Bruse, Jan Lukas, Galar, Mikel, Geradts, Zeno

论文摘要

生物识别系统代表用户身份验证和验证等任务中的有效解决方案,因为它们能够以高精度分析物理和行为特征。但是,尤其是当使用虹膜识别的情况下,使用物理生物识别技术时,它们需要特定的硬件,例如视网膜扫描仪,传感器或HD摄像机来获得相关的结果。同时,他们要求用户非常靠近相机来提取高分辨率信息。因此,在这项工作中,我们提出了一种新的方法,该方法使用远程(LR)距离图像实现虹膜验证系统。更具体地说,我们提出了一种新的方法,用于将LR IRIS图像转换为图形,然后使用图形暹罗神经网络(GSNN)预测两个图是否属于同一人。在这项研究中,我们不仅描述了这种方法,还评估了这些图像的光谱成分如何用于改善图形提取和最终分类任务。结果证明了这种方法的适用性,鼓励社区探索生物识别系统中的图形应用。

Biometric systems represent valid solutions in tasks like user authentication and verification, since they are able to analyze physical and behavioural features with high precision. However, especially when physical biometrics are used, as is the case of iris recognition, they require specific hardware such as retina scanners, sensors, or HD cameras to achieve relevant results. At the same time, they require the users to be very close to the camera to extract high-resolution information. For this reason, in this work, we propose a novel approach that uses long-range (LR) distance images for implementing an iris verification system. More specifically, we present a novel methodology for converting LR iris images into graphs and then use Graph Siamese Neural Networks (GSNN) to predict whether two graphs belong to the same person. In this study, we not only describe this methodology but also evaluate how the spectral components of these images can be used for improving the graph extraction and the final classification task. Results demonstrate the suitability of this approach, encouraging the community to explore graph application in biometric systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源