论文标题

查看机器人看不到的内容:学习视觉导航的合作感

See What the Robot Can't See: Learning Cooperative Perception for Visual Navigation

论文作者

Blumenkamp, Jan, Li, Qingbiao, Wang, Binyu, Liu, Zhe, Prorok, Amanda

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We consider the problem of navigating a mobile robot towards a target in an unknown environment that is endowed with visual sensors, where neither the robot nor the sensors have access to global positioning information and only use first-person-view images. In order to overcome the need for positioning, we train the sensors to encode and communicate relevant viewpoint information to the mobile robot, whose objective it is to use this information to navigate to the target along the shortest path. We overcome the challenge of enabling all the sensors (even those that cannot directly see the target) to predict the direction along the shortest path to the target by implementing a neighborhood-based feature aggregation module using a Graph Neural Network (GNN) architecture. In our experiments, we first demonstrate generalizability to previously unseen environments with various sensor layouts. Our results show that by using communication between the sensors and the robot, we achieve up to 2.0x improvement in SPL (Success weighted by Path Length) when compared to a communication-free baseline. This is done without requiring a global map, positioning data, nor pre-calibration of the sensor network. Second, we perform a zero-shot transfer of our model from simulation to the real world. Laboratory experiments demonstrate the feasibility of our approach in various cluttered environments. Finally, we showcase examples of successful navigation to the target while both the sensor network layout as well as obstacles are dynamically reconfigured as the robot navigates. We provide a video demo, the dataset, trained models, and source code. https://www.youtube.com/watch?v=kcmr6RUgucw https://github.com/proroklab/sensor-guided-visual-nav

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源