论文标题

旋转平均值网络具有皮肤镜检查图像分类和检索的不变性

A Rotation Meanout Network with Invariance for Dermoscopy Image Classification and Retrieval

论文作者

Zhang, Yilan, Xie, Fengying, Song, Xuedong, Zhou, Hangning, Yang, Yiguang, Zhang, Haopeng, Liu, Jie

论文摘要

计算机辅助诊断(CAD)系统可以为皮肤病的临床诊断提供参考。卷积神经网络(CNN)不仅可以提取视觉元素,例如颜色和形状,还可以提取语义特征。因此,他们在皮肤镜检查图像的许多任务中都取得了重大改进。皮肤镜检查的成像没有主取向,表明数据集中有大量的皮肤病变旋转。但是,CNN缺乏旋转不变性,这必然会影响CNN对旋转的鲁棒性。为了解决此问题,我们提出了一个旋转平均值(RM)网络,以从皮肤镜检查图像中提取旋转不变特征。在RM中,每组旋转的特征地图对应于一组重量共享卷积的输出,并使用Meanout策略融合以获取最终特征地图。通过理论推导,提出的RM网络是旋转等值的,并且在全球平均池(GAP)操作之后,可以提取旋转不变的特征。提取的旋转不变特征可以更好地代表分类和检索任务的原始数据。 RM是一般操作,不会改变网络结构或增加任何参数,并且可以灵活地嵌入CNN的任何部分。大量实验是在皮肤镜图像数据集上进行的。结果表明,我们的方法表现优于其他抗旋转方法,并在皮肤镜图像分类和检索任务方面取得了重大改进,这表明在皮肤镜图像领域旋转不变性的潜力。

The computer-aided diagnosis (CAD) system can provide a reference basis for the clinical diagnosis of skin diseases. Convolutional neural networks (CNNs) can not only extract visual elements such as colors and shapes but also semantic features. As such they have made great improvements in many tasks of dermoscopy images. The imaging of dermoscopy has no principal orientation, indicating that there are a large number of skin lesion rotations in the datasets. However, CNNs lack rotation invariance, which is bound to affect the robustness of CNNs against rotations. To tackle this issue, we propose a rotation meanout (RM) network to extract rotation-invariant features from dermoscopy images. In RM, each set of rotated feature maps corresponds to a set of outputs of the weight-sharing convolutions and they are fused using meanout strategy to obtain the final feature maps. Through theoretical derivation, the proposed RM network is rotation-equivariant and can extract rotation-invariant features when followed by the global average pooling (GAP) operation. The extracted rotation-invariant features can better represent the original data in classification and retrieval tasks for dermoscopy images. The RM is a general operation, which does not change the network structure or increase any parameter, and can be flexibly embedded in any part of CNNs. Extensive experiments are conducted on a dermoscopy image dataset. The results show our method outperforms other anti-rotation methods and achieves great improvements in dermoscopy image classification and retrieval tasks, indicating the potential of rotation invariance in the field of dermoscopy images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源