论文标题

有限组的增强功率图的lambda数

Lambda Number of the enhanced power graph of a finite group

论文作者

Parveen, Dalal, Sandeep, Kumar, Jitender

论文摘要

有限组$ g $的增强功率图是一个简单的无向图,其顶点集为$ g $,如果$ x,y \ in \ langle z \ rangle $ in G $中的某些$ z \,则两个不同的顶点$ x,y $相邻。 $ l(2,1)$ - 图$γ$的标签是$ v(γ)$的整数标签,因此相邻的顶点具有至少$ 2 $的标签,而Vertices距离$ 2 $相隔的标签具有至少$ 1 $的标签。 $λ$ number $γ$,用$λ(γ)$表示,是所有$ L(2,1)$标签的最小范围。在本文中,我们研究了组$ g $的增强功率图$ \ Mathcal {p} _e(g)$的lambda编号。本文将lambda数量的功率图数量在[22]中获得的相应结果扩展到增强的功率图。此外,对于非平凡的简单组$ g $的订单$ n $,我们证明$λ(\ Mathcal {p} _e(g))= n $,并且仅当$ g $不是循环的订单$ n \ geq 3 $。最后,如果$ g $是有限的nilpotent组,我们计算$λ(\ mathcal {p} _e(g))$的确切值。

The enhanced power graph of a finite group $G$ is the simple undirected graph whose vertex set is $G$ and two distinct vertices $x, y$ are adjacent if $x, y \in \langle z \rangle$ for some $z \in G$. An $L( 2,1)$-labeling of graph $Γ$ is an integer labeling of $V(Γ)$ such that adjacent vertices have labels that differ by at least $2$ and vertices distance $2$ apart have labels that differ by at least $1$. The $λ$-number of $Γ$, denoted by $λ(Γ)$, is the minimum range over all $L( 2,1)$-labelings. In this article, we study the lambda number of the enhanced power graph $\mathcal{P}_E(G)$ of the group $G$. This paper extends the corresponding results, obtained in [22], of the lambda number of power graphs to enhanced power graphs. Moreover, for a non-trivial simple group $G$ of order $n$, we prove that $λ(\mathcal{P}_E(G)) = n$ if and only if $G$ is not a cyclic group of order $n\geq 3$. Finally, we compute the exact value of $λ(\mathcal{P}_E(G))$ if $G$ is a finite nilpotent group.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源