论文标题
礁石调查的实时边缘ai系统
A Real-time Edge-AI System for Reef Surveys
论文作者
论文摘要
thorn的海星(COTS)爆发是大堡礁(GBR)珊瑚损失的主要原因,并且正在进行实质性的监视和控制计划,以将COTS人群管理至生态可持续的水平。在本文中,我们在边缘设备上介绍了基于水下的水下数据收集和策展系统,以进行COTS监视。特别是,我们利用基于深度学习的对象检测技术的功能,并提出了一种资源有效的COTS检测器,该检测器在边缘设备上执行检测推断,以帮助海上专家在数据收集阶段进行COTS识别。初步结果表明,可以将改善计算效率的几种策略(例如,批处理处理,帧跳过,模型输入大小)组合在一起,以在Edge硬件上运行拟议的检测模型,资源消耗较低,信息损失较低。
Crown-of-Thorn Starfish (COTS) outbreaks are a major cause of coral loss on the Great Barrier Reef (GBR) and substantial surveillance and control programs are ongoing to manage COTS populations to ecologically sustainable levels. In this paper, we present a comprehensive real-time machine learning-based underwater data collection and curation system on edge devices for COTS monitoring. In particular, we leverage the power of deep learning-based object detection techniques, and propose a resource-efficient COTS detector that performs detection inferences on the edge device to assist marine experts with COTS identification during the data collection phase. The preliminary results show that several strategies for improving computational efficiency (e.g., batch-wise processing, frame skipping, model input size) can be combined to run the proposed detection model on edge hardware with low resource consumption and low information loss.