论文标题
使用深学习胶囊网络基于组织病理学图像的乳腺癌分类
Breast Cancer Classification Based on Histopathological Images Using a Deep Learning Capsule Network
论文作者
论文摘要
乳腺癌是女性可能发生的最严重的癌症之一。通过分析组织学图像(HIS)自动诊断乳腺癌对患者及其预后很重要。他的分类为临床医生提供了对疾病的准确了解,并使他们可以更有效地治疗患者。由于其能力自动提取功能,深度学习(DL)方法已成功地用于各种领域,尤其是医学成像。这项研究旨在使用他的乳腺癌对不同类型的乳腺癌进行分类。在这项研究中,我们提出了一个增强的胶囊网络,该网络使用RES2NET块和四个额外的卷积层提取多尺度特征。此外,由于使用了小的卷积内核和RES2NET块,因此所提出的方法具有较少的参数。结果,新方法的表现优于旧方法,因为它会自动学习最佳功能。测试结果表明该模型的表现优于先前的DL方法。
Breast cancer is one of the most serious types of cancer that can occur in women. The automatic diagnosis of breast cancer by analyzing histological images (HIs) is important for patients and their prognosis. The classification of HIs provides clinicians with an accurate understanding of diseases and allows them to treat patients more efficiently. Deep learning (DL) approaches have been successfully employed in a variety of fields, particularly medical imaging, due to their capacity to extract features automatically. This study aims to classify different types of breast cancer using HIs. In this research, we present an enhanced capsule network that extracts multi-scale features using the Res2Net block and four additional convolutional layers. Furthermore, the proposed method has fewer parameters due to using small convolutional kernels and the Res2Net block. As a result, the new method outperforms the old ones since it automatically learns the best possible features. The testing results show that the model outperformed the previous DL methods.