论文标题
过椭圆形韦尔斯特群点的整体盘子环
The integral Chow rings of the stacks of hyperelliptic Weierstrass points
论文作者
论文摘要
我们计算堆栈的积分盘环$ {\ Mathcal H} _ {g,n}^w $用$ n $标记的Weierstrass点参数化的高纤维曲线。我们证明,这些堆栈中的每一个的整体盘环由任何$ψ$类别产生为代数,并且所有关系都生活在学位上。
We compute the integral Chow rings of the stacks ${\mathcal H}_{g,n}^w$ parametrizing hyperelliptic curves with $n$ marked Weierstrass points. We prove that the integral Chow rings of each of these stacks is generated as an algebra by any of the $Ψ$-classes and that all relations live in degree one.