论文标题

DESCOD-ECG:基于分数的深度扩散模型,用于ECG基线徘徊和降噪

DeScoD-ECG: Deep Score-Based Diffusion Model for ECG Baseline Wander and Noise Removal

论文作者

Li, Huayu, Ditzler, Gregory, Roveda, Janet, Li, Ao

论文摘要

目的:心电图(ECG)信号通常会遭受噪声干扰,例如基线徘徊。心电图信号的高质量和高保真重建对于诊断心血管疾病具有重要意义。因此,本文提出了一种新型的心电图基线徘徊和降噪技术。方法:我们以特定于心电图信号的条件方式扩展了扩散模型,即心电图基线的基线徘徊和降噪(Descod-ecg)的基于深度分数的扩散模型。此外,我们部署了一个多拍的平均策略,以改善信号重建。我们在QT数据库和MIT-BIH噪声应力测试数据库上进行了实验,以验证该方法的可行性。采用基线方法进行比较,包括传统的基于数字过滤器和基于深度学习的方法。结果:数量评估结果表明,与最佳基线方法相比,所提出的方法在四个基于四个距离的相似性指标上获得了至少20 \%总体改进的出色性能。结论:本文证明了DESCOD-ECG在ECG基线徘徊和删除噪声方面的最先进性能,在极端噪声腐败下,具有更好的真实数据分布和更高稳定性的近似值。意义:这项研究是最早扩展基于条件扩散的生成模型以去除ECG噪声的研究之一,而DESCOD-ECG具有广泛用于生物医学应用的潜力。

Objective: Electrocardiogram (ECG) signals commonly suffer noise interference, such as baseline wander. High-quality and high-fidelity reconstruction of the ECG signals is of great significance to diagnosing cardiovascular diseases. Therefore, this paper proposes a novel ECG baseline wander and noise removal technology. Methods: We extended the diffusion model in a conditional manner that was specific to the ECG signals, namely the Deep Score-Based Diffusion model for Electrocardiogram baseline wander and noise removal (DeScoD-ECG). Moreover, we deployed a multi-shots averaging strategy that improved signal reconstructions. We conducted the experiments on the QT Database and the MIT-BIH Noise Stress Test Database to verify the feasibility of the proposed method. Baseline methods are adopted for comparison, including traditional digital filter-based and deep learning-based methods. Results: The quantities evaluation results show that the proposed method obtained outstanding performance on four distance-based similarity metrics with at least 20\% overall improvement compared with the best baseline method. Conclusion: This paper demonstrates the state-of-the-art performance of the DeScoD-ECG for ECG baseline wander and noise removal, which has better approximations of the true data distribution and higher stability under extreme noise corruptions. Significance: This study is one of the first to extend the conditional diffusion-based generative model for ECG noise removal, and the DeScoD-ECG has the potential to be widely used in biomedical applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源