论文标题

在线分散的Frank-Wolfe:从理论界限到智能构建的应用

Online Decentralized Frank-Wolfe: From theoretical bound to applications in smart-building

论文作者

Mitra, Angan, Thang, Nguyen Kim, Nguyen, Tuan-Anh, Trystram, Denis, Youssef, Paul

论文摘要

在快速增长的世界中,分散学习算法的设计很重要,在这个世界中,数据分布在本地计算资源和通信有限的参与者上。在这个方向上,我们提出了一种在线算法最小化从网络上分布的单个数据/模型汇总的非凸损失函数。我们提供算法的理论性能保证,并在现实生活中展示其实用性。

The design of decentralized learning algorithms is important in the fast-growing world in which data are distributed over participants with limited local computation resources and communication. In this direction, we propose an online algorithm minimizing non-convex loss functions aggregated from individual data/models distributed over a network. We provide the theoretical performance guarantee of our algorithm and demonstrate its utility on a real life smart building.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源