论文标题

部分可观测时空混沌系统的无模型预测

COCOA: Cross Modality Contrastive Learning for Sensor Data

论文作者

Deldari, Shohreh, Xue, Hao, Saeed, Aaqib, Smith, Daniel V., Salim, Flora D.

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Self-Supervised Learning (SSL) is a new paradigm for learning discriminative representations without labelled data and has reached comparable or even state-of-the-art results in comparison to supervised counterparts. Contrastive Learning (CL) is one of the most well-known approaches in SSL that attempts to learn general, informative representations of data. CL methods have been mostly developed for applications in computer vision and natural language processing where only a single sensor modality is used. A majority of pervasive computing applications, however, exploit data from a range of different sensor modalities. While existing CL methods are limited to learning from one or two data sources, we propose COCOA (Cross mOdality COntrastive leArning), a self-supervised model that employs a novel objective function to learn quality representations from multisensor data by computing the cross-correlation between different data modalities and minimizing the similarity between irrelevant instances. We evaluate the effectiveness of COCOA against eight recently introduced state-of-the-art self-supervised models, and two supervised baselines across five public datasets. We show that COCOA achieves superior classification performance to all other approaches. Also, COCOA is far more label-efficient than the other baselines including the fully supervised model using only one-tenth of available labelled data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源