论文标题

部分可观测时空混沌系统的无模型预测

Approximating Hessian matrices using Bayesian inference: a new approach for quasi-Newton methods in stochastic optimization

论文作者

Carlon, Andre, Espath, Luis, Tempone, Raul

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

Using quasi-Newton methods in stochastic optimization is not a trivial task given the difficulty of extracting curvature information from the noisy gradients. Moreover, pre-conditioning noisy gradient observations tend to amplify the noise. We propose a Bayesian approach to obtain a Hessian matrix approximation for stochastic optimization that minimizes the secant equations residue while retaining the extreme eigenvalues between a specified range. Thus, the proposed approach assists stochastic gradient descent to converge to local minima without augmenting gradient noise. We propose maximizing the log posterior using the Newton-CG method. Numerical results on a stochastic quadratic function and an $\ell_2$-regularized logistic regression problem are presented. In all the cases tested, our approach improves the convergence of stochastic gradient descent, compensating for the overhead of solving the log posterior maximization. In particular, pre-conditioning the stochastic gradient with the inverse of our Hessian approximation becomes more advantageous the larger the condition number of the problem is.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源