论文标题

PVBM:基于视网膜血管分割的Python Vasculature生物标志物工具箱

PVBM: A Python Vasculature Biomarker Toolbox Based On Retinal Blood Vessel Segmentation

论文作者

Fhima, Jonathan, Van Eijgen, Jan, Stalmans, Ingeborg, Men, Yevgeniy, Freiman, Moti, Behar, Joachim A.

论文摘要

简介:血管可以从数字眼底图像(DFI)中可视化。几项研究表明,从DFI获得的心血管风险与血管特征之间存在关联。计算机视觉和图像分割方面的最新进展使自动化DFI血管分割。需要从这些分段DFI中自动计算数字脉管生物标志物(VBM)的资源。方法:在本文中,我们引入了Python Vasculature生物标志物工具箱,表示PVBM。总共实施了11个VBM。特别是,我们引入了新的算法方法来估计曲折和分支角度。使用PVBM,作为可用性的证明,我们分析了青光眼患者和健康对照组之间的几何血管差异。结果:我们基于DFI分割建立了一个全自动的脉管系统生物标志物工具箱,并提供了表征青光眼的血管变化的可用性证明。对于小动脉和静脉,与健康对照组相比,青光眼患者的所有生物标志物都显着且较低,除了曲折度,静脉奇异长度和静脉分支角度。 结论:我们已经从视网膜血管分割中对11个VBM进行了自动化。 PVBM工具箱是根据GNU GPL 3许可证开源的,可在Physiozoo.com(发布之后)上找到。

Introduction: Blood vessels can be non-invasively visualized from a digital fundus image (DFI). Several studies have shown an association between cardiovascular risk and vascular features obtained from DFI. Recent advances in computer vision and image segmentation enable automatising DFI blood vessel segmentation. There is a need for a resource that can automatically compute digital vasculature biomarkers (VBM) from these segmented DFI. Methods: In this paper, we introduce a Python Vasculature BioMarker toolbox, denoted PVBM. A total of 11 VBMs were implemented. In particular, we introduce new algorithmic methods to estimate tortuosity and branching angles. Using PVBM, and as a proof of usability, we analyze geometric vascular differences between glaucomatous patients and healthy controls. Results: We built a fully automated vasculature biomarker toolbox based on DFI segmentations and provided a proof of usability to characterize the vascular changes in glaucoma. For arterioles and venules, all biomarkers were significant and lower in glaucoma patients compared to healthy controls except for tortuosity, venular singularity length and venular branching angles. Conclusion: We have automated the computation of 11 VBMs from retinal blood vessel segmentation. The PVBM toolbox is made open source under a GNU GPL 3 license and is available on physiozoo.com (following publication).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源