论文标题

探索自定义元元服务的注意力吸引网络资源分配

Exploring Attention-Aware Network Resource Allocation for Customized Metaverse Services

论文作者

Du, Hongyang, Wang, Jiacheng, Niyato, Dusit, Kang, Jiawen, Xiong, Zehui, Xuemin, Shen, Kim, Dong In

论文摘要

在支持计算和通信技术的支持下,元评估有望为用户带来前所未有的服务体验。但是,元用户数量的增加对网络资源的需求很大,尤其是用于基于图形扩展现实并需要呈现大量虚拟对象的元式服务。为了有效利用网络资源并改善体验质量(QOE),我们设计了一种注意力感知的网络资源分配方案,以实现自定义的荟萃服务。目的是将更多的网络资源分配给用户更感兴趣的虚拟对象。我们首先讨论与荟萃服务有关的几种关键技术,包括QOE分析,眼睛跟踪和远程渲染。然后,我们查看现有的数据集并提出用户对象 - 注意级别(UOAL)数据集,该数据集包含30个用户对1,000张图像中96个对象的地面诚实关注。提供了有关如何使用UOAL的教程。在UOAL的帮助下,我们提出了一种注意力感知的网络资源分配算法,该算法有两个步骤,即注意力预测和QOE最大化。特别是,我们概述了两种类型的注意力预测方法的设计,即兴趣感知和时间感知预测。通过使用预测的用户对象 - 注意值,可以最佳分配边缘设备的渲染能力等网络资源以最大化QoE。最后,我们提出了与元服务有关的有前途的研究指示。

Emerging with the support of computing and communications technologies, Metaverse is expected to bring users unprecedented service experiences. However, the increase in the number of Metaverse users places a heavy demand on network resources, especially for Metaverse services that are based on graphical extended reality and require rendering a plethora of virtual objects. To make efficient use of network resources and improve the Quality-of-Experience (QoE), we design an attention-aware network resource allocation scheme to achieve customized Metaverse services. The aim is to allocate more network resources to virtual objects in which users are more interested. We first discuss several key techniques related to Metaverse services, including QoE analysis, eye-tracking, and remote rendering. We then review existing datasets and propose the user-object-attention level (UOAL) dataset that contains the ground truth attention of 30 users to 96 objects in 1,000 images. A tutorial on how to use UOAL is presented. With the help of UOAL, we propose an attention-aware network resource allocation algorithm that has two steps, i.e., attention prediction and QoE maximization. Specially, we provide an overview of the designs of two types of attention prediction methods, i.e., interest-aware and time-aware prediction. By using the predicted user-object-attention values, network resources such as the rendering capacity of edge devices can be allocated optimally to maximize the QoE. Finally, we propose promising research directions related to Metaverse services.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源