论文标题
欧拉(Euler
Explicit results for Euler's factorial series in arithmetic progressions under GRH
论文作者
论文摘要
在本文中,我们研究了Euler的阶乘系列$ f_p(t)= \ sum_ {n = 0}^\ infty n!首先,我们表明,如果我们考虑$kφ(m)/(k+1)$降低的残留系统模型$ m $中的残留类别,那么在某些明确的额外条件下,我们必须具有$λ_0+λ_1f_p(α__1)+\ \ \ \ \ ldots+λ_kf_p(α_k)\ neq 0 $ yeq 0 $ prime。我们还证明了以前的线性表单明确的$ p $ - adic下限。其次,我们考虑了从$kφ(m)/(k+1)$残留类中进行算术进展中的素数的情况。然后是一个无限的间隔集合,每个间隔都至少包含一个素数,该间隔是在那些算术进程中,并且我们的$λ_0+λ_1f_p(α_1)+\ ldots+λ_kf_p(α__k)\ neq 0 $。我们还为先前的线性表单得出了明确的$ p $ -adic下限。
In this article, we study the Euler's factorial series $F_p(t)=\sum_{n=0}^\infty n!t^n$ in $p$-adic domain under the Generalized Riemann Hypothesis. First, we show that if we consider primes in $kφ(m)/(k+1)$ residue classes in the reduced residue system modulo $m$, then under certain explicit extra conditions we must have $λ_0+λ_1F_p(α_1)+\ldots+λ_kF_p(α_k) \neq 0$ for at least one such prime. We also prove an explicit $p$-adic lower bound for the previous linear form. Secondly, we consider the case where we take primes in arithmetic progressions from more than $kφ(m)/(k+1)$ residue classes. Then there is an infinite collection of intervals each containing at least one prime which is in those arithmetic progressions and for which we have $λ_0+λ_1F_p(α_1)+\ldots+λ_kF_p(α_k) \neq 0$. We also derive an explicit $p$-adic lower bound for the previous linear form.