论文标题

设计实验中的多元时间序列的功能性模型:用于大脑信号的应用

Functional-Coefficient Models for Multivariate Time Series in Designed Experiments: with Applications to Brain Signals

论文作者

Redondo, Paolo Victor, Huser, Raphael, Ombao, Hernando

论文摘要

为了研究注意力缺陷多动障碍(ADHD)的神经生理基础,临床医生使用脑电图(EEG)记录皮层上神经元电活动的脑电图。提出了一个新的框架,而不是专注于单渠道光谱功率,而是提出了用于研究整个网络中通道之间相互作用(依赖性)的新型框架。尽管在研究大脑连接性方面很好地探索了相干性和部分定向连贯性(PDC)等依赖性措施,但这些措施仅捕获线性依赖性。此外,在设计的临床实验中,即使在同质组中,这些依赖性度量也会在受试者之间有所不同。为了解决这些局限性,我们提出了混合效应功能性自回归(MXFAR)模型,该模型通过结合特定于主体的随机效应来捕获受试者之间的变化。 MXFAR模型的优点如下:(i)捕获通道之间潜在的非线性依赖性; (ii)非参数是非参数,因此对于模拟错误指定的模型而灵活且健壮; (iii)它可以捕获群体存在时之间的差异; (iv)它解释了受试者之间的变化; (v)该框架很容易结合来自混合效应模型的知名推理方法; (vi)可以将其推广以适应各种协变量和因素。然后,我们制定了一种新型的非线性光谱度量,即功能部分定向连贯性(FPDC),以在不同频率振荡下提取动态交叉依赖性模式。最后,我们将提出的MXFAR-FPDC框架应用于分析多通道EEG信号,并报告有关ADHD患者脑功能网络改变的新发现。

To study the neurophysiological basis of attention deficit hyperactivity disorder (ADHD), clinicians use electroencephalography (EEG) which record neuronal electrical activity on the cortex. Instead of focusing on single-channel spectral power, a novel framework for investigating interactions (dependence) between channels in the entire network is proposed. Although dependence measures such as coherence and partial directed coherence (PDC) are well explored in studying brain connectivity, these measures only capture linear dependence. Moreover, in designed clinical experiments, these dependence measures are observed to vary across subjects even within a homogeneous group. To address these limitations, we propose the mixed-effects functional-coefficient autoregressive (MXFAR) model which captures between-subject variation by incorporating subject-specific random effects. The advantages of the MXFAR model are the following: (i) it captures potential non-linear dependence between channels; (ii) it is nonparametric and hence flexible and robust to model mis-specification; (iii) it can capture differences between groups when they exist; (iv) it accounts for variation across subjects; (v) the framework easily incorporates well-known inference methods from mixed-effects models; (vi) it can be generalized to accommodate various covariates and factors. Then, we formulate a novel non-linear spectral measure, the functional partial directed coherence (fPDC), to extract dynamic cross-dependence patterns at different frequency oscillations. Finally, we apply the proposed MXFAR-fPDC framework to analyze multichannel EEG signals and report novel findings on altered brain functional networks in ADHD patients.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源