论文标题

卷积神经网络具有混合损失函数,用于FDG PET图像中淋巴瘤病变的全自动分割

Convolutional neural network with a hybrid loss function for fully automated segmentation of lymphoma lesions in FDG PET images

论文作者

Yousefirizi, Fereshteh, Dubljevic, Natalia, Ahamed, Shadab, Bloise, Ingrid, Gowdy, Claire, O, Joo Hyun, Farag, Youssef, de Schaetzen, Rodrigue, Martineau, Patrick, Wilson, Don, Uribe, Carlos F., Rahmim, Arman

论文摘要

淋巴瘤病变的分割由于全身PET扫描中的各种大小和位置而具有挑战性。这项工作使用具有异质特征的弥漫性大B细胞淋巴瘤(DLBCL)的多中心数据集提出了一种完全自动化的分割技术。我们利用了来自两个不同成像中心的[18F] FDG-PET扫描(n = 194)的数据集,包括具有原发性纵隔大B细胞淋巴瘤(PMBCL)的病例(n = 104)。将自动化的大脑和膀胱清除方法用作预处理步骤,以应对这些器官中正常多代谢摄取引起的假阳性。我们的分割模型是基于3D U-NET体系结构的卷积神经网络(CNN),其中包括挤压和激发(SE)模块。利用了杂种分布,区域和基于边界的损失(统一局灶性和芒福德 - 莎阿(MS)),与其他组合相比,表现出最佳性能(p <0.05)。在火车/验证数据上应用了不同中心,DLBCL和PMBCL病例之间的交叉验证以及三个随机拆分。这六个模型的合奏达到了骰子相似系数(DSC)为0.77 +-0.08,而Hausdorff距离(HD)为16.5 +-12.5。与3D U-NET(无SE SE模块)相比,我们具有与混合损失分割的SE模块的3D U-NET模型相比,使用相同的损耗函数(DSC = 0.64 +-0.21和HD = 26.3 + - 18.7)。我们的模型可以在多中心环境中促进完全自动化的定量管道,这为总代谢肿瘤体积(TMTV)的常规报告打开了可能性,并且显示出对淋巴瘤管理有用的其他指标。

Segmentation of lymphoma lesions is challenging due to their varied sizes and locations in whole-body PET scans. This work presents a fully-automated segmentation technique using a multi-center dataset of diffuse large B-cell lymphoma (DLBCL) with heterogeneous characteristics. We utilized a dataset of [18F]FDG-PET scans (n=194) from two different imaging centers, including cases with primary mediastinal large B-cell lymphoma (PMBCL) (n=104). Automated brain and bladder removal approaches were utilized as preprocessing steps to tackle false positives caused by normal hypermetabolic uptake in these organs. Our segmentation model is a convolutional neural network (CNN) based on a 3D U-Net architecture that includes squeeze and excitation (SE) modules. Hybrid distribution, region, and boundary-based losses (Unified Focal and Mumford-Shah (MS)) were utilized that showed the best performance compared to other combinations (p<0.05). Cross-validation between different centers, DLBCL and PMBCL cases, and three random splits were applied on train/validation data. The ensemble of these six models achieved a Dice similarity coefficient (DSC) of 0.77 +- 0.08 and Hausdorff distance (HD) of 16.5 +-12.5. Our 3D U-net model with SE modules for segmentation with hybrid loss performed significantly better (p<0.05) as compared to the 3D U-Net (without SE modules) using the same loss function (Unified Focal and MS loss) (DSC= 0.64 +-0.21 and HD= 26.3 +- 18.7). Our model can facilitate a fully automated quantification pipeline in a multi-center context that opens the possibility for routine reporting of total metabolic tumor volume (TMTV) and other metrics shown useful for the management of lymphoma.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源