论文标题
开发深度学习算法,用于推断喷气处的上游分离密度
Developing Deep Learning Algorithms for Inferring Upstream Separatrix Density at JET
论文作者
论文摘要
上游分隔电子密度的预测和实时推理能力,$ n_ \ text {e,sep} $,对于核心 - 边缘集成等离子体方案的设计和控制至关重要。在这项研究中,探索了监督和半监督的机器学习算法,以建立直接映射以及基座配置文件的间接压缩表示,以预测$ n _ {\ text {e,sep}} $的预测和推断。基于JET的Eurofusion基座数据库,创建了一个表格数据集,由机器参数,ELM循环的一部分,高分辨率的电子密度和温度的Thomson散射曲线以及$ n _ {\ text {e,SEP}} $ 608喷射射击。使用表格数据集,直接映射方法将机器参数和ELM百分比映射到$ n _ {\ text {e,sep}} $。通过表示学习,建立了实验基座电子密度和温度曲线的压缩表示。通过用机器控制参数调节表示形式,建立了概率生成预测模型。为了进行预测,可以使用机器参数来建立压缩基座轮廓的条件分布,并且可以使用作为算法的一部分进行训练的解码器将压缩表示形式解释回完整的基座配置文件。尽管在这项工作中,给出了预测和推断$ n _ {\ text {e,sep}} $的原理证明,但由于预测完整的基座配置文件,因此也可以用于许多其他应用程序。可以在https://github.com/fusionbyby2030/moxie上找到这项工作的实施。
Predictive and real-time inference capability for the upstream separatrix electron density, $n_\text{e, sep}$, is essential for design and control of core-edge integrated plasma scenarios. In this study, both supervised and semi-supervised machine learning algorithms are explored to establish direct mapping as well as indirect compressed representation of the pedestal profiles for predictions and inference of $n_{\text{e, sep}}$. Based on the EUROfusion pedestal database for JET, a tabular dataset was created, consisting of machine parameters, fraction of ELM cycle, high resolution Thomson scattering profiles of electron density and temperature, and $n_{\text{e, sep}}$ for 608 JET shots. Using the tabular dataset, the direct mapping approach provides a mapping of machine parameters and ELM percentage to $n_{\text{e, sep}}$. Through representation learning, a compressed representation of the experimental pedestal electron density and temperature profiles is established. By conditioning the representation with machine control parameters, a probabilistic generative predictive model is established. For prediction, the machine parameters can be used to establish a conditional distribution of the compressed pedestal profiles, and the decoder that is trained as part of the algorithm can be used to decode the compressed representation back to full pedestal profiles. Although, in this work, a proof-of-principle for predicting and inferring $n_{\text{e, sep}}$ is given, such a representation learning can be used also for many other applications as the full pedestal profile is predicted. An implementation of this work can be found at https://github.com/fusionby2030/moxie.