论文标题

Sobolev空间中可压缩磁性水力动力学边界层方程的长时间适合性

Long time well-posedness of compressible magnetohydrodynamics boundary layer equations in Sobolev space

论文作者

Li, Shengxin, Xie, Feng

论文摘要

在本文中,我们考虑了溶液对二维可压缩磁性水力动力学(MHD)边界层方程的长期良好性。当初始数据是稳定解决方案的小扰动时,大小为$ \ varepsilon $,而远场状态也是Sobolev空间中这样稳定的解决方案的微小扰动,则证明解决方案的寿命大于$ \ \ \ \ varepsilon^{ - \ frac43} $。

In this paper we consider the long time well-posedness of solutions to two dimensional compressible magnetohydrodynamics (MHD) boundary layer equations. When the initial data is a small perturbation of a steady solution with size of $\varepsilon$ and the far-field state is also a small perturbation around such a steady solution in Sobolev space, then the lifespan of solutions is proved to be greater than $\varepsilon^{-\frac43}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源