论文标题
Sobolev空间中可压缩磁性水力动力学边界层方程的长时间适合性
Long time well-posedness of compressible magnetohydrodynamics boundary layer equations in Sobolev space
论文作者
论文摘要
在本文中,我们考虑了溶液对二维可压缩磁性水力动力学(MHD)边界层方程的长期良好性。当初始数据是稳定解决方案的小扰动时,大小为$ \ varepsilon $,而远场状态也是Sobolev空间中这样稳定的解决方案的微小扰动,则证明解决方案的寿命大于$ \ \ \ \ varepsilon^{ - \ frac43} $。
In this paper we consider the long time well-posedness of solutions to two dimensional compressible magnetohydrodynamics (MHD) boundary layer equations. When the initial data is a small perturbation of a steady solution with size of $\varepsilon$ and the far-field state is also a small perturbation around such a steady solution in Sobolev space, then the lifespan of solutions is proved to be greater than $\varepsilon^{-\frac43}$.