论文标题
学习视频阴影检测的阴影通信
Learning Shadow Correspondence for Video Shadow Detection
论文作者
论文摘要
视频阴影检测旨在在视频帧之间产生一致的阴影预测。但是,当前的方法跨越了整个框架的阴影预测不一致,尤其是在视频中的照明和背景纹理变化时。我们观察到不一致的预测是由阴影特征不一致引起的,即,相同阴影区域的特征在附近的框架之间显示出不同的礼节。在本文中,我们提出了一种新颖的阴影通信方法(SC-COR),以增强视频跨界视频影像阴影的特定阴影相似性。我们提出的SC-COR具有三个主要优势。首先,如果不需要密集的像素到像素对应标签,SC-COR可以以弱监督的方式学习跨帧的像素对应。其次,SC-COR考虑了阴影内的可分离性,这对视频中的变体纹理和照明是可靠的。最后,SC-COR是一个插件模块,可以轻松地集成到没有额外的计算成本的情况下。我们进一步设计了一个新的评估指标,以评估视频阴影检测结果的时间稳定性。实验结果表明,SC-COR的表现优于先前的最新方法,而IOU的表现为6.51%,而新引入的时间稳定性度量为3.35%。
Video shadow detection aims to generate consistent shadow predictions among video frames. However, the current approaches suffer from inconsistent shadow predictions across frames, especially when the illumination and background textures change in a video. We make an observation that the inconsistent predictions are caused by the shadow feature inconsistency, i.e., the features of the same shadow regions show dissimilar proprieties among the nearby frames.In this paper, we present a novel Shadow-Consistent Correspondence method (SC-Cor) to enhance pixel-wise similarity of the specific shadow regions across frames for video shadow detection. Our proposed SC-Cor has three main advantages. Firstly, without requiring the dense pixel-to-pixel correspondence labels, SC-Cor can learn the pixel-wise correspondence across frames in a weakly-supervised manner. Secondly, SC-Cor considers intra-shadow separability, which is robust to the variant textures and illuminations in videos. Finally, SC-Cor is a plug-and-play module that can be easily integrated into existing shadow detectors with no extra computational cost. We further design a new evaluation metric to evaluate the temporal stability of the video shadow detection results. Experimental results show that SC-Cor outperforms the prior state-of-the-art method, by 6.51% on IoU and 3.35% on the newly introduced temporal stability metric.