论文标题

指数规范相关分析与正交变化

Exponential canonical correlation analysis with orthogonal variation

论文作者

Yuan, Dongbang, Zhang, Yunfeng, Guo, Shuai, Wang, Wenyi, Gaynanova, Irina

论文摘要

规范相关分析(CCA)是研究两个数据源之间关联的标准工具;但是,它不是为具有计数或比例测量类型的数据而设计的。另外,尽管CCA会发现通用信号,但它并未阐明哪些信号是每个数据源唯一的信号。为了应对这些挑战,我们为基于指数家庭的CCA提出了一个新的框架,并具有针对普通和特定信号的明确建模。与以前基于指数族的方法不同,我们模型中的常见信号与高斯CCA中的规范变量一致,而独特的信号完全正交。这些建模差异通过与正交性约束的优化导致了非平凡的估计,为此我们基于分裂方法开发了一种迭代算法。与可用替代方案相比,模拟显示了所提出方法的均值或卓越性能。我们应用了在营养学研究中分析基因表达与脂质浓度之间的关联的方法,并分析前列腺癌肿瘤异质性研究中两种不同细胞类型反卷积方法之间的关联。

Canonical correlation analysis (CCA) is a standard tool for studying associations between two data sources; however, it is not designed for data with count or proportion measurement types. In addition, while CCA uncovers common signals, it does not elucidate which signals are unique to each data source. To address these challenges, we propose a new framework for CCA based on exponential families with explicit modeling of both common and source-specific signals. Unlike previous methods based on exponential families, the common signals from our model coincide with canonical variables in Gaussian CCA, and the unique signals are exactly orthogonal. These modeling differences lead to a non-trivial estimation via optimization with orthogonality constraints, for which we develop an iterative algorithm based on a splitting method. Simulations show on par or superior performance of the proposed method compared to the available alternatives. We apply the method to analyze associations between gene expressions and lipids concentrations in nutrigenomic study, and to analyze associations between two distinct cell-type deconvolution methods in prostate cancer tumor heterogeneity study.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源