论文标题
Mulvimotion:来自多视图心脏MRI的形状感知3D心肌运动跟踪
MulViMotion: Shape-aware 3D Myocardial Motion Tracking from Multi-View Cardiac MRI
论文作者
论文摘要
从Cine心脏磁共振(CMR)成像中恢复心脏的3D运动可以评估区域心肌功能,对于理解和分析心血管疾病很重要。但是,3D心脏运动估计是具有挑战性的,因为获得的Cine CMR图像通常是2D切片,它限制了对整个平面运动的准确估计。为了解决这个问题,我们提出了一个新型的多视图运动估计网络(Mulvimotion),该网络集成了以短轴和长轴平面获取的2D Cine CMR图像,以学习心脏的一致性3D运动场。在提出的方法中,构建了混合2D/3D网络,以通过从多视图图像中学习融合表示形式来生成密集的3D运动场。为了确保运动估计在3D中保持一致,在训练过程中引入了形状正则化模块,其中利用了来自多视图图像的形状信息,以提供3D运动估计的弱监督。我们对来自英国生物银行研究的580受试者的2D Cine CMR图像进行了广泛评估,用于左心室心肌的3D运动跟踪。实验结果表明,所提出的方法在定量和定性上优于竞争方法。
Recovering the 3D motion of the heart from cine cardiac magnetic resonance (CMR) imaging enables the assessment of regional myocardial function and is important for understanding and analyzing cardiovascular disease. However, 3D cardiac motion estimation is challenging because the acquired cine CMR images are usually 2D slices which limit the accurate estimation of through-plane motion. To address this problem, we propose a novel multi-view motion estimation network (MulViMotion), which integrates 2D cine CMR images acquired in short-axis and long-axis planes to learn a consistent 3D motion field of the heart. In the proposed method, a hybrid 2D/3D network is built to generate dense 3D motion fields by learning fused representations from multi-view images. To ensure that the motion estimation is consistent in 3D, a shape regularization module is introduced during training, where shape information from multi-view images is exploited to provide weak supervision to 3D motion estimation. We extensively evaluate the proposed method on 2D cine CMR images from 580 subjects of the UK Biobank study for 3D motion tracking of the left ventricular myocardium. Experimental results show that the proposed method quantitatively and qualitatively outperforms competing methods.