论文标题
$ c_n \ square p_m $的支配号码$ n \ equiv 2 \ pmod {5} $
The Domination Number of $C_n\square P_m$ for $n\equiv 2\pmod{5}$
论文作者
论文摘要
我们使用动态编程算法来建立一个新的下界,上面是$ c_n \ square p_m $的完整圆柱网格图的统治数,即路径和周期的笛卡尔产物,当$ n \ equiv 2 \ equiv 2 \ equiv 2 \ pmod {5} $,我们建立了一个新的上限等于较低的限制,从而构成了较低的限制,因此计算了这些图形的数字。
We use a dynamic programming algorithm to establish a new lower bound on the domination number of complete cylindrical grid graphs of the form $C_n\square P_m$, that is, the Cartesian product of a path and a cycle, when $n\equiv 2\pmod{5}$, and we establish a new upper bound equal to the lower bound, thus computing the exact domination number for these graphs.