论文标题

图像质量评估:以模型为中心和以数据为中心的方法集成

Image Quality Assessment: Integrating Model-Centric and Data-Centric Approaches

论文作者

Cao, Peibei, Li, Dingquan, Ma, Kede

论文摘要

基于学习的图像质量评估(IQA)在过去十年中取得了显着的进步,但几乎所有人都将两个关键组成部分(模型和数据)隔离。具体而言,以模型为中心的IQA着重于在固定和广泛重复使用的数据集上开发``更好的''客观质量方法,并有过度适应的危险。以数据为中心的IQA涉及进行心理物理实验来构建``更好''人类注销的数据集,不幸的是,该数据集忽略了数据集创建过程中当前的IQA模型。在本文中,我们首先设计了一系列实验,以计算探测模型和数据的这种隔离阻碍IQA的进一步进展。然后,我们描述一个集成了以模型为中心和数据为中心的IQA的计算框架。作为一个具体示例,我们设计了计算模块,以量化候选图像的抽样值。实验结果表明,所提出的值得采样的模块成功地发现了所检查的盲人IQA模型的各种故障,这些模型确实值得在下一代数据集中包含在内。

Learning-based image quality assessment (IQA) has made remarkable progress in the past decade, but nearly all consider the two key components -- model and data -- in isolation. Specifically, model-centric IQA focuses on developing ``better'' objective quality methods on fixed and extensively reused datasets, with a great danger of overfitting. Data-centric IQA involves conducting psychophysical experiments to construct ``better'' human-annotated datasets, which unfortunately ignores current IQA models during dataset creation. In this paper, we first design a series of experiments to probe computationally that such isolation of model and data impedes further progress of IQA. We then describe a computational framework that integrates model-centric and data-centric IQA. As a specific example, we design computational modules to quantify the sampling-worthiness of candidate images. Experimental results show that the proposed sampling-worthiness module successfully spots diverse failures of the examined blind IQA models, which are indeed worthy samples to be included in next-generation datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源