论文标题

“你关注我吗?”:对对话状态跟踪最近方法的调查

"Do you follow me?": A Survey of Recent Approaches in Dialogue State Tracking

论文作者

Jacqmin, Léo, Rojas-Barahona, Lina M., Favre, Benoit

论文摘要

在与用户进行交流时,以任务为导向的对话系统必须根据对话历史记录在每个回合中跟踪用户的需求。这个称为对话状态跟踪(DST)的过程至关重要,因为它直接告知下游对话政策。近年来,DST引起了很大的兴趣,文本到文本范式作为受欢迎的方法。在本评论论文中,我们首先介绍任务及其相关的数据集。然后,考虑到最近出版的大量出版物,我们确定了2021 - 2022年研究的重点和研究进展。尽管神经方法已经取得了重大进展,但我们认为对话系统(例如概括性)的某些关键方面仍未得到充实。为了激励未来的研究,我们提出了几种研究途径。

While communicating with a user, a task-oriented dialogue system has to track the user's needs at each turn according to the conversation history. This process called dialogue state tracking (DST) is crucial because it directly informs the downstream dialogue policy. DST has received a lot of interest in recent years with the text-to-text paradigm emerging as the favored approach. In this review paper, we first present the task and its associated datasets. Then, considering a large number of recent publications, we identify highlights and advances of research in 2021-2022. Although neural approaches have enabled significant progress, we argue that some critical aspects of dialogue systems such as generalizability are still underexplored. To motivate future studies, we propose several research avenues.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源